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Abstract

This study compares the performances of four state-of-the-art evolutionary multi-objective optimization (EMO) algorithms: the
Non-Dominated Sorted Genetic Algorithm II (NSGAII), the Epsilon-Dominance Non-Dominated Sorted Genetic Algorithm II
(e-NSGAII), the Epsilon-Dominance Multi-Objective Evolutionary Algorithm (eMOEA), and the Strength Pareto Evolutionary
Algorithm 2 (SPEA2), on a four-objective long-term groundwater monitoring (LTM) design test case. The LTM test case objectives
include: (i) minimize sampling cost, (ii) minimize contaminant concentration estimation error, (iii) minimize contaminant concen-
tration estimation uncertainty, and (iv) minimize contaminant mass estimation error. The 25-well LTM design problem was enu-
merated to provide the true Pareto-optimal solution set to facilitate rigorous testing of the EMO algorithms. The performances
of the four algorithms are assessed and compared using three runtime performance metrics (convergence, diversity, and e-perfor-
mance), two unary metrics (the hypervolume indicator and unary e-indicator) and the first-order empirical attainment function.
Results of the analyses indicate that the e-NSGAII greatly exceeds the performance of the NSGAII and the eMOEA. The e-NSGAII
also achieves superior performance relative to the SPEA2 in terms of search effectiveness and efficiency. In addition, the e-NSGAII�s
simplified parameterization and its ability to adaptively size its population and automatically terminate results in an algorithm
which is efficient, reliable, and easy-to-use for water resources applications.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

This study demonstrates the effectiveness of a modi-
fied version of Deb�s Non-Dominated Sorted Genetic
Algorithm II (NSGAII) [1], which the authors have
named the Epsilon-Dominance Non-Dominated Sorted
Genetic Algorithm II (e-NSGAII) [1–4], at solving a
four-objective long-term groundwater monitoring de-
sign test case. The e-NSGAII incorporates prior compe-
tent evolutionary algorithm (EA) design concepts [2]
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and epsilon-dominance archiving [5] to improve the ori-
ginal NSGAII�s efficiency, reliability, and ease-of-use.
This algorithm eliminates much of the traditional trial-
and-error parameterization associated with evolutionary
multi-objective optimization (EMO) through epsilon-
dominance archiving [5,6], dynamic population sizing
[7], and automatic termination. The effectiveness and
reliability of the new algorithm is compared to the origi-
nal NSGAII [1] as well as two other benchmark multi-
objective evolutionary algorithms (MOEAs), the
Epsilon-Dominance Multi-Objective Evolutionary
Algorithm (eMOEA) [6] and the Strength Pareto Evolu-
tionary Algorithm 2 (SPEA2) [8]. Each of the MOEAs
selected have been demonstrated to be highly effective
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at solving numerous multi-objective test problems and
applications [1,4,6,8–11].

When decision making in water resources problems is
characterized by conflicting objectives, optimality must
be defined in the context of the application�s tradeoffs.
More formally, these tradeoffs characterize the Pareto
front [12], which is composed of the set of solutions
where improvement in one objective degrades perfor-
mance in at least one other objective [13]. For instance,
when optimizing well placement in long-term groundwa-
ter monitoring (LTM) design, minimizing both sampling
uncertainty and sampling costs results in a tradeoff in
which a design�s uncertainty can only be decreased if
the decision maker is willing to increase costs by sam-
pling from more locations. The determination of the
Pareto-optimal solutions for multiple conflicting objec-
tives is referred to as multi-objective optimization [13]
and the determination of these solutions can aid in the
design of LTM and other water resources systems.
MOEAs, which evolve solutions through a process anal-
ogous to Darwinian natural selection [14], have become
an increasingly popular optimization technique in recent
years. Since many water resources problems are charac-
terized by multiple conflicting objectives and huge deci-
sion spaces, the challenge of developing MOEAs that
can efficiently search these spaces and provide a suffi-
cient approximation to the true tradeoffs is a problem
of significant importance.

This paper will demonstrate the e-NSGAII�s perfor-
mance using a four-objective LTM application. For-
mally, LTM can be defined as the sampling of
groundwater quality over long time-scales to provide
‘‘sufficient and appropriate information’’ to assess if cur-
rent mitigation or contaminant control measures are
performing adequately to be protective of human and
ecological health [15]. The LTM problem has garnered
significant interest within the water resources commu-
nity over the past decade due to the tremendous expense
and complexity of characterizing groundwater contami-
nation sites over long time periods (for reviews see [15–
17]). For example, a recent LTM task committee report
[15] highlights that projected federal expenditures on
LTM for the decade beginning in the year 2000 will be
more than five-billion US dollars. Prior work has dem-
onstrated that LTM design is an extremely challenging
optimization problem with multiple conflicting objec-
tives and very large discrete decision spaces [18–27].

Schaffer [28] developed one of the first EMO algo-
rithms termed the vector evaluated genetic algorithm
(VEGA), which was designed to search decision spaces
for the optimal tradeoffs among a vector of objectives.
Subsequent innovations in EMO have resulted in a rap-
idly growing field with a variety of solution methods
that have been used successfully in a wide range of appli-
cations (as reviewed by [13,29–31]). These solution
methods have garnered increased attention over the past
decade and have been applied successfully in a variety
of water resources and environmental applications
[18–20,32–36]. More recently, Muleta and Nicklow [37]
utilized MOEAs as decision support tools for manage-
ment of non-point source pollution in watersheds.
Keedwell and Khu [38] recently highlighted the ability
of MOEAs to aid in optimal design of water distribution
networks. Farmani et al. [39] have conducted a compara-
tive study of the performance of several MOEAs at pro-
viding optimal tradeoffs for water distribution network
design. Many additional applications exist in the litera-
ture with these being the most recent, indicating that
MOEAs are important decision support tools for many
aspects of water resources science and engineering.

The MOEA comparison study presented in this paper
proceeds as follows. Section 2 details the underlying
methodology of this study and describes the LTM test
case. Section 3 details each of the algorithms which
are compared. The metrics used to assess MOEA perfor-
mance are described in Section 4. Section 5 provides a
detailed description of the study�s computational exper-
iment and the parameterization of each algorithm. Sec-
tion 6 presents the results of the study using runtime
visualizations of the performances of each algorithm
and additional end-of-run performance metric results in-
tended to provide rigorous algorithm assessments. Sec-
tion 7 presents a discussion regarding each algorithm�s
suitability to the LTM test case and the implications
of this study for other water resources applications.
Conclusions of the study are presented in Section 8.
2. Methodology

2.1. Multi-objective search and optimization

in LTM design

The goal of multi-objective optimization is to identify
the Pareto-optimal tradeoffs between an application�s
design objectives. These tradeoffs are composed of the
set of solutions that are better than all other solutions
in at least one objective and are termed non-dominated
or Pareto-optimal solutions [12]. The Pareto-optimal
front is obtained by plotting these solutions according
to their objective values yielding an M � 1 dimensional
surface where M is equal to the total number of objec-
tives. The term high-order Pareto surfaces is used to de-
scribe those surfaces that result from three or more
conflicting objectives. Reed and Minsker [20] recently
demonstrated high-order Pareto-optimization on a
LTM test case containing 29 wells for four-objectives
using quantile kriging and the NSGAII. The algorithm
successfully identified 1,156 non-dominated designs
approximating the Pareto-optimal set using 450,000 de-
sign evaluations out of a total decision space consisting
of over 500 million possible designs. Ultimately, Reed



Fig. 2. Visualization of the true four-objective Pareto front for the 25
well LTM test case. The sampling cost, concentration estimation error,
and concentration estimation uncertainty objectives are represented by
the x-, y-, and z-coordinates and the contaminant mass estimation
error objective is represented by marker color.
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and Minsker [20] demonstrated how to exploit their
approximation to the Pareto front to identify one com-
promise solution. This application demonstrated that
MOEAs are capable of high-order Pareto optimization
of water resources problems characterized by three or
more objectives. The reader should note however that
in this prior study, the true Pareto-optimal tradeoffs
were not known, making it difficult to assess true algo-
rithm performance.

2.2. Test case development

The LTM test case used in this study is based on a 50-
million node flow and transport simulation originally
developed by Maxwell et al. [40]. This test case repre-
sents the migration of a hypothetical perchloroethylene
(PCE) plume originating from an underground storage
tank. The hydrogeology of the site has been extensively
characterized and is based on a highly heterogeneous
alluvial aquifer located at the Lawrence Livermore
National Laboratory in Livermore, California. PCE
concentration data are provided in mg m�3 at 47 hypo-
thetical sampling locations in a 25 well monitoring net-
work for a snapshot in time eight years following the
initial release of contaminant. Each well can be sampled
from one to three times along its vertical axis. The sam-
pling domain extends 650 m in the x-direction, 168 m in
the y-direction, and 38.4 m in the z-direction with a min-
imum horizontal spacing of 10 m between wells (see
Fig. 1). The test case contaminant concentration data
are both highly skewed and highly variable with well
sampling locations clustered in an ad hoc manner within
the body and at the source of the contaminant plume,
making this test case representative of many real-world
sites (see Reed et al. [41] for additional details).

In order to accurately assess the performance of each
MOEA at solving the LTM test case, the true four-
objective Pareto-optimal solution set was enumerated
for the 25 well LTM test case. In this study, it is assumed
that if a well is sampled, then all locations along its ver-
tical axis are sampled, which as a result limits the deci-
Fig. 1. A representative cross-sectional slice of the simulated PCE contamina
sampling (represented by stars) and each well has one to three sampling loc
sion space of the problem to 225 (over 33-million)
possible sampling schemes. The size of the test case
was selected to limit the time required to enumerate all
possible solutions to six days of continuous computing
on a Pentium IV 3.0 GHz processor running Microsoft�

Windows XP. The reader should note that the test case
was generated by eliminating the four least important
wells from the larger 29 well case analyzed previously
by Reed and Minsker [20]. A geostatistical analysis of
the 25 well subset revealed no significant changes in
the variogram structure. The true four-objective Pareto
front for the 25 well LTM test case is presented in
Fig. 2. The sampling cost, concentration estimation
error, and local uncertainty objectives (which will be
explained in greater detail in Section 2.4) are represented
by the x-, y-, and z-coordinates and the fourth objective,
mass estimation error, is represented by the color of the
tion plume used in this study. There are 25 well locations available for
ations along its vertical axes.
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markers. The interested reader is invited to explore the
electronic version of this article which provides a full
color illustration of Fig. 2 as well as a movie which illus-
trates the rotation of the figure. There are a total of 2439
Pareto optimal designs for the 25 well LTM test case
and out of the 33,554,432 potential sampling schemes,
45.6% of them are infeasible based on the objective for-
mulation presented in Section 2.4.
2.3. Spatial interpolation

Spatial interpolation of the contamination plume was
conducted using quantile kriging based on the recom-
mendations of Reed et al. [41]. Kriging provides a min-
imum error-variance estimate value at an unsampled
location provided the data at the sampled locations
[42]. Quantile kriging extends ordinary kriging (OK)
by transforming the sample values to quantile space
(or rank transform space) using Eq. (1), where mi is
the rank of each sample value i and N is the number
of samples.

cð�xÞ ¼ mi

N þ 1
ð1Þ

The quantile values represent the probability that a
sample is less than or equal to its value, or more com-
monly, the empirical cumulative distribution function
(CDF), resulting in normalized data. Samples are kriged
in quantile space and then transformed back to concen-
tration space using the generated CDF [43,44]. Since
OK assumes stationarity of the concentration mean,
moving local search neighborhoods are used to estimate
the expected value at each location [42]. Reed et al. [41]
found that quantile kriging showed the least bias with
respect to variability of PCE concentrations and prefer-
ential sampling, and was most robust in representing the
plume when compared to five other interpolation
methods.

For this study, the contamination plume was interpo-
lated using a C translation of KT3D, a three-dimen-
sional kriging library written in Fortran as part of the
GSLIB software package [42]. A spherical variogram
structure with nugget = 0.005 and range = 18 m was
used. The interpolation grid was defined by 34 blocks
in x, 7 blocks in y, and 7 blocks in z, resulting in 1666
estimation points. The search neighborhood size was
based on an ellipsoid structure with axes lengths equal
to half of each the x, y, and z extents of the study region.
The search neighborhood was divided into octants, and
a maximum of one data point from each octant was used
in the estimation of a point, ensuring that clustered data
points did not bias interpolation estimates. For a more
thorough description of each of the kriging parameters
used in this study, the interested reader should refer to
the books by Deutsch and Journel [42] and Goovaerts
[45] as well as the study conducted by Reed et al. [41].
2.4. Objective formulation

Four-objectives are to be minimized for the LTM test
case described in Section 2.2: (i) sampling cost, (ii) rela-
tive error of local contaminant concentration estimates,
(iii) local contaminant concentration estimation uncer-
tainty, and (iv) contaminant mass estimation error.
Eq. (2) represents the objective formulation where
F(xj) is a vector valued performance function in which
the four-objectives: cost, concentration error, local
uncertainty, and mass estimation error are minimized.
Eq. (3) subjects F(xj) to the constraint that the number
of unestimated points, U(xj), in the interpolation do-
main is zero. This means that if quantile kriging of a
particular sampling plan results in any of the 1666 grid
points being unestimated, then that particular sampling
plan is considered infeasible.

Minimize

FðxjÞ ¼ ðfcostðxjÞ; fconcðxjÞ; funcertðxjÞ; fmassðxjÞÞ;
8j 2 X ð2Þ

Subject to UðxjÞ ¼ 0 ð3Þ

The objectives are all a function of the vector xj repre-
senting the jth sampling plan in the decision space X.
Each component i of a sampling plan j is determined
from Eq. (4) which results in a string of binary digits
indicating whether or not a well is sampled.

xj;i ¼
1; if the ith well is sampled

0; otherwise
8j; i

�
ð4Þ

The sampling cost objective quantifies the monitoring
cost of a particular sampling scheme using Eq. (5).
The coefficient CS defines the cost per sample (normal-
ized to one in this study). As described in Section 2.2,
the maximum number of monitoring wells, nwells, that
can be sampled is 25. Since the monitoring wells have
a range of one to three potential sampling points on
their vertical axis, the sampling cost coefficients range
from 1 to 3. Additionally, if a well is sampled, it is as-
sumed that all locations along its vertical axis are sam-
pled. The cost objective is quantified by summing the
cost coefficients of each of the wells in a particular
scheme resulting in a normalized cost ranging from 0
to 47 for the 25 well test case.

fcostðxjÞ ¼
Xnwell

i¼1

CSðiÞxj;i ð5Þ

The relative error of local contaminant concentration
estimates objective measures how the kriged picture of
the plume using the jth sampling plan differs from that
obtained by sampling all well locations. Eq. (6) quanti-
fies the concentration error objective by summing the
squared differences between the concentration estimates
at each of the nest = 1666 grid locations uj obtained uti-
lizing all available well sampling locations, call(uj), and



796 J.B. Kollat, P.M. Reed / Advances in Water Resources 29 (2006) 792–807
the concentration estimates at each of the 1666 grid
locations obtained using the jth sampling plan, cj(uj).

fconcðxjÞ ¼
Xnest

j¼1

ðcallðujÞ � cjðujÞÞ2 ð6Þ

Local contaminant concentration estimation uncer-
tainty is quantified by summing the estimation standard
deviations obtained from kriging at each of the
nest = 1666 grid locations uj using Eq. (7). The standard
error weight coefficient, Aj, can be used to assign impor-
tance to uncertainty estimates at different locations in
the interpolation domain. For this study, Aj was as-
sumed constant across the interpolation domain and
was assigned a value of 2

ffiffiffi
3
p

based on the standard devi-
ation of a uniform distribution.

funcertðxjÞ ¼
Xnest

j¼1

AjrðujÞ ð7Þ

The contaminant mass estimation error objective
quantifies the relative error between the total mass of
dissolved contaminant estimated using all well locations,
Massall, and the contaminant mass estimated from the
jth sampling plan, Massj. The contaminant data at
each sampling location were defined in terms of dis-
solved mass of contaminant per volume aquifer to en-
sure additivity. All mass estimates were computed as
integrals representing the zeroth spatial moment of the
contaminant plume. Eq. (8) expresses the relative mass
estimation error in terms of a percentage.

fmassðxjÞ ¼
Massall �Massj

Massall

����
���� � 100% ð8Þ

Sampling schemes that contain too few wells, or wells
that are poorly distributed in space, may not have a suf-
ficient number of data points in the kriging neighbor-
hoods to perform interpolation and hence result in
unestimated points in the interpolation domain (violat-
ing the constraint described by Eq. (3)). In this case,
the objectives are penalized to ensure that infeasible
sampling schemes are eliminated from consideration.
Eq. (9) is applied to each objective function if a feasibil-
ity violation occurs, resulting in solutions with lower fit-
ness (i.e., higher objective values in a minimization
problem) which greatly reduces their chances of surviv-
ing the evolutionary process.

FpenaltyðxjÞ ¼

f penalty
cost ¼ fcost þ f max

cost

f penalty
conc ¼ fconc þ nest þ UðxjÞ þ f max

cost

f penalty
uncert ¼ funcert þ nest þ UðxjÞ þ f max

cost

f penalty
mass ¼ fmass þ nest þ UðxjÞ þ f max

cost

8>>>><
>>>>:

ð9Þ

Eq. (9) penalizes the objective functions based on the
maximum cost of a sampling scheme, in this case 47
(based on all available sampling locations), the total
number of estimation points in the grid, in this case
1666 (based on the sizing of the interpolation grid),
and the total number of unestimated points, U(xj), in
the infeasible sampling plan. For example, if a particular
sampling plan results in 10 unestimated points in the
interpolation grid, the fitness penalty added to the de-
sign�s cost objective would be 47, and the fitness penalty
added to the values for the concentration error, uncer-
tainty, and mass error objectives would be 1723. Since
the maximum cost of the system was known based on
the test case data, Eq. (9) is defined so that all infeasible
solutions will have costs that exceed the maximum feasi-
ble cost (i.e., 47). The exact ranges of the other objectives
were not known a priori, so 1723 is a conservative pen-
alty for the concentration error, uncertainty, and mass
error objectives ensuring that when penalized, their fit-
ness values will exceed their maximum feasible values.
Penalizing solutions rather than eliminating them en-
sures that sampling schemes which are almost feasible
are given the opportunity to further evolve into feasible
designs.
3. Algorithm comparison

In this study, the performances of the NSGAII [1],
the e-NSGAII [1–4], the eMOEA [6], and the SPEA2
[46,47] are compared using the true Pareto optimal solu-
tion set of the four-objective LTM test case. All of the
algorithms share similarities in that they use real param-
eter simulated binary crossover (SBX) [48], polynomial
mutation [13], and elitism [13]. Key differences between
the algorithms are highlighted in the following sections.
The reader should note that this paper assumes a basic
prior knowledge of MOEAs. Readers interested in intro-
ductions to multi-objective optimization and EMO tools
should refer to the texts by Deb [13] and Coello Coello
et al. [31].

3.1. NSGAII

The NSGAII is a second generation MOEA devel-
oped by Deb et al. [1] which made significant improve-
ments to the original NSGA by (i) using a more
efficient non-domination sorting scheme, (ii) eliminating
the sharing parameter, and (iii) adding an implicitly elit-
ist selection method that greatly aids in capturing Pareto
surfaces. In addition, the NSGAII can handle both real
and binary representations. The NSGAII was chosen for
comparison in this study because it has been successfully
employed in prior LTM studies [20], and it is the origi-
nal algorithm from which the authors of this study
developed the e-NSGAII. For the LTM test case, all
of the algorithms evaluate potential designs in terms of
a vector of objectives. The concept of Pareto-dominance
is used to assign fitness values to the sampling designs.
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For example, a design x1 dominates another design x2 if
and only if it performs as well as x2 in all objectives and
better in at least one objective. The fast non-domination
sorting approach of the NSGAII ranks each design
according to the number of designs that dominate it.
Once fitness is assigned, two-step crowded binary tour-
nament selection is performed. In cases where two de-
signs have different ranks, the individual with the
lower rank is preferred (i.e., the design that is dominated
by fewer other designs). Alternatively, if both designs
possess the same rank, then the design with the larger
crowding distance is preferred (where crowding distance
is the average Euclidean distance between an individual
design and those designs within the population that have
been assigned the same rank). Designs with higher
crowding distances add more diversity to the design
population, which helps to ensure that the NSGAII will
find solutions along the full extent of the Pareto surface.
The interested reader should refer to Deb et al. [1,49] for
additional details. Zitzler et al. [8] and Deb et al. [49]
have shown that the NSGAII performed as well as or
better than other second-generation MOEAs on difficult
multi-objective problems.

3.2. e-NSGAII

The e-NSGAII builds on the NSGAII, by adding
e-dominance archiving [5,6], adaptive population sizing
[7], and automatic termination to minimize the need
for extensive parameter calibration as demonstrated by
Reed et al. [2]. The concept of e-dominance allows the
user to specify the precision with which they want to
quantify each objective in a multi-objective problem.
Fig. 3 demonstrates the concept of e-dominance using
a three step approach. First, a user specified e grid is ap-
plied to the search space of the problem based on their
precision goals. Larger e values result in a courser grid
(and ultimately fewer solutions) while smaller e values
produce a finer grid. Grid blocks containing multiple
solutions preserve the solution closest to the lower left-
hand corner of the block (assuming minimization of
all objectives). In the second step, non-domination sort-
ing based on the grid blocks is conducted. For example,
the solution located in the leftmost column four rows
from the bottom dominates the shaded region of grid
Fig. 3. Illustration of the e-dominance concept.
blocks above and to the right. Thus, the solution above
it is dominated in terms of the required precision, and
hence eliminated. This results in a ‘‘thinning’’ of solu-
tions (step 3) and promotes a more even search of the
objective space. It is important to note that the addition
of e-dominance archiving does not add additional
parameters to the algorithm. Rather, it allows the user
to define the precision requirements that make sense
for their particular application. The interested reader
can refer to prior work by Laumanns et al. [5] and
Deb et al. [6] for a more detailed description of
e-dominance.

The e-NSGAII uses a series of ‘‘connected runs’’
where small populations are initially exploited to pre-
condition search and automatically adapt population
size commensurate with problem difficulty (see
Fig. 4). As the search progresses, the population size
is automatically adapted based on the number of e-
non-dominated solutions that the algorithm has found.
Epsilon-non-dominated solutions found after each gen-
eration are stored in an archive and subsequently used
to direct the search using a 25% injection scheme. In
the injection scheme, 25% of the subsequent population
will be composed of the e-non-dominated archive solu-
tions and the other 75% will be generated randomly.
This assists the search in two ways: (i) by directing
the search using previously evolved solutions and (ii)
by adding new solutions to encourage the exploration
of additional regions of the search space. This injection
scheme bounds the population size to four times the
number of solutions that exist at the user specified e
resolution. Theoretically, this approach allows the
MOEA�s population size to increase or decrease, and
in the limit when the e-dominance archive size stabi-
lizes, the e-NSGAII�s ‘‘connected runs’’ are equivalent
to a diversity-based EA search enhancement recom-
mended by Goldberg [50] termed ‘‘time continuation’’.
The search is terminated across all runs (i.e., across all
populations used) if the number and quality of solu-
tions has not increased above D% across two successive
runs.

The primary goal in the development of the
e-NSGAII was to provide a highly reliable and efficient
MOEA which minimizes the need for traditional EA
parameterization and allows the user to focus on prob-
lem specific search quality goals. Computational savings
can be viewed in three contexts: (i) the use of minimal
population sizes, (ii) the elimination of trial-and-error
application runs to determine search parameters, and
(iii) the elimination of random seed analysis. Although
the adaptation of population size will differ depending
on the random seed chosen, exploiting small popula-
tions to precondition search will on average greatly re-
duce computation times. Moreover, this approach
minimizes unnecessary runtime by terminating search
based on user defined precision goals.



Fig. 4. Schematic diagram of the e-NSGAII illustrated using the notation of Deb et al. [1]. This figure shows the ‘‘connected runs’’ and dynamic
population sizing concepts of the e-NSGAII with a blow-up diagram of what occurs during each generation of each run. In the figure, N represents
population size and A represents e-dominance archive size.
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3.3. eMOEA

The eMOEA [6] is a steady-state MOEA which, sim-
ilarly to the e-NSGAII, uses the concept of e-dominance
to promote solution diversity and provide the user with
the capability to specify desired objective precision. This
algorithm evolves both an EA population and an ar-
chive population simultaneously. Initially, a population
is generated at random based on a user specified size,
and an archive is generated based on the e-non-domi-
nated solutions from this initial population. Next, an
individual design is chosen from the population and
the archive for mating. The design chosen from the pop-
ulation is based on random selection of two designs, and
the one which dominates is chosen for mating, otherwise
if they are non-dominated, one is chosen at random. The
design chosen from the archive is simply chosen at ran-
dom. The two designs are then combined to produce one
new design. To determine if the new design is included in
either the population or the archive, several tests ensue.
For inclusion in the population, three scenarios exist: (i)
if the new design dominates any designs which already
exist, then it replaces one at random, (ii) if it is domi-
nated by any existing designs, it is not accepted into
the population, and (iii) if it is non-dominated with re-
spect to the existing designs, it replaces a random mem-
ber of the population. For inclusion in the archive, three
scenarios also exist: (i) if the new design is e-dominated
by any design in the archive, it is not accepted, (ii) if it
e-dominates any member of the archive, it randomly re-
places a dominated design, and (iii) if the new design is
e-non-dominated, and if it does not occur within any of
the archive designs� e hyperboxes, then it is accepted.
Otherwise, the two designs occurring in the same hyper-
box are compared and the best design with respect to
domination in the traditional sense is accepted. The size
of the archive is inherently bounded by the user specified
e resolution of the objectives [6]. Termination of the
eMOEA is based on a user specified maximum runtime.
Deb et al. [6] have shown that the eMOEA performs as
well as or better than various other second-generation
MOEAs on difficult multi-objective problems.

3.4. SPEA2

The SPEA2 [8] was selected for comparison in this
study because it is a benchmark MOEA that has proven
quite effective at solving numerous high-dimensional
problems while maintaining excellent solution diversity
[1,8–11]. Initially, a random population of user specified
size is generated and the non-dominated individuals are
placed into a fixed size archive (the size of which is also
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user specified). Design fitness is then assigned to each ar-
chive solution by assigning a strength value which repre-
sents the number of designs which the solution
dominates, then changing the strength to raw fitness
by summing the strengths of all designs from the popu-
lation and archive which dominate the solution, and fi-
nally by addition of a density value which is based on
the kth nearest neighbor method [51] where density is
a decreasing function of the distance to the kth nearest
design. It is important to note that raw fitness is to be
minimized, meaning that a raw fitness of zero indicates
a non-dominated design and a high raw fitness value
means the design is dominated by many individuals.
Next, environmental selection ensues in which all non-
dominated individuals from the population and archive
are copied to the next archive. However, since the ar-
chive size is fixed, two additional scenarios exist beyond
the non-dominated solutions exactly filling the archive.
The first scenario occurs when the number of non-dom-
inated solutions is smaller than the archive size. In this
case, all non-dominated solutions are copied and the
best dominated solutions are copied to fill the remainder
of the archive. The second scenario is when there are
more non-dominated solutions than the archive can
store. In this case, archive truncation occurs in which
solutions with minimum distance to the kth nearest
neighbor are removed. Termination of the SPEA2 is
based on a user specified maximum runtime.
4. Metrics of performance

Since MOEA search is initialized with randomly gen-
erated populations and since evolutionary operators are
probabilistic, the process can yield high variability in
search efficiency and reliability. It is standard practice
to overcome this variability by running EMO algo-
rithms for a distribution of ‘‘seeds’’ for the random
number generator which is used to initialize and guide
their probabilistic search. This analysis can be extremely
time consuming if not impossible for computationally
intensive water resources applications. The goals of this
comparative analysis is to identify which of the algo-
rithms: (i) attain very close approximations to the true
Pareto front (i.e., convergence), (ii) attain solutions
along the full extent of the Pareto front (i.e., diversity),
(iii) maximize the rate of search progress (i.e., computa-
tional efficiency), and (iv) show the least sensitivity to
random seed effects (i.e., search reliability).

To aid in assessing the performance of each algorithm
based on these criteria, several performance metrics
which assign a measure of quality to the algorithms�
solutions are used. Performance metrics can be used to
assess the quality of the end result, or to visualize the
dynamics of the runtime performance of the algorithms.
This is particularly useful when comparing multiple
algorithms. When the end results of the algorithms do
not differ substantially, the way in which they achieve
these results throughout their run may provide more
information regarding performance. In this study, three
runtime performance metrics are used: convergence,
diversity (both previously published by Deb and Jain
[11]), and e-performance (a metric recently proposed
by the authors [4]). Two unary metrics, the hypervolume
indicator metric proposed by Zitzler and Thiele [52], and
the unary e-indicator metric proposed by Zitzler et al.
[53], are used to evaluate the average final performances
of the algorithms. In addition, the first-order empirical
attainment function proposed by Fonseca et al. [54] is
used to assess each of the algorithms� abilities to attain
solutions on two-objective subsets of the full four-objec-
tive Pareto front.

Many of the performance metrics used in this study
require a reference solution set for comparison pur-
poses. The reference set can represent the true Pareto-
optimal solution set or the best known approximation
to the Pareto-optimal set attained through previous
algorithm runs or by other means. In this study, if a met-
ric required a reference set, the true four-objective Par-
eto-optimal set for the LTM test case was used.

4.1. Runtime convergence and diversity

The runtime convergence and diversity metrics used
in this study were originally proposed by Deb and Jain
[11]. The runtime convergence metric measures the aver-
age Euclidean distance between an approximation set
(i.e., the set of solutions found by the algorithm [53])
and a reference set (i.e., the known Pareto front ob-
tained through enumeration of the 25 well test case).
The convergence metric when normalized ranges from
zero (indicating perfect performance) to one. The run-
time diversity metric measures the ‘‘spread’’ of solutions
along the full extent of the tradeoff comparing the distri-
bution of the approximation set with respect to a refer-
ence set. In calculating the metric, the approximation set
and reference set are projected onto an M � 1 dimen-
sional hyperplane where M is the number of objectives.
The projected approximation set is then compared to
the projected reference set in terms of distribution across
the objective space. The metric value is determined by
favouring well distributed solutions with a high weight
and assigning low weights to clustered solutions. The
values of this metric range from zero to one (indicating
perfect diversity).

4.2. e-Performance

The e-performance metric, recently proposed by Kol-
lat and Reed [4] assigns a measure of performance by
accounting for the proportion of solutions that fall with-
in a user specified e distance of a reference set. First, the



Fig. 5. Example calculation of the e-performance metric.
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e-dominance concept is applied to the reference set
according to user specified values (see Fig. 3). The pro-
portion of solutions found within an e hypercube of each
reference set solution is measured by matching solutions
from the approximation set to the reference set. Refer-
ence set solutions with a matching approximation set
solution receive a score of one while those with no
matching solution receive no score (see Fig. 5 for an
example calculation of the metric). Reference solutions
with multiple matching approximation solutions use
the solution which is closest in terms of Euclidean dis-
tance, allowing the additional solutions to be matched
with other reference solutions which may have overlap-
ping e hyperboxes (one case of this is shown in Fig. 5).
This metric inherently provides a measure of both con-
vergence and diversity because it accounts for the dis-
tance of the solutions from the reference set (i.e.,
convergence), while only allowing for one solution to
be matched with each e hyperbox surrounding the refer-
ence points, thus preventing clustered solutions from
having additional weight in the calculation of the metric.
This metric ranges from zero to one where a metric
value of one would indicate 100% convergence to within
e of the reference set. The interested reader should note
that unlike the diversity metric which becomes impracti-
cal for higher-dimensional problems (see Deb and Jain
[11] for details), the e-performance metric can easily be
extended to any number of objectives.

4.3. Hypervolume indicator and e-indicator

The hypervolume indicator metric [52] represents the
volume of the objective space that is dominated by a
solution set. Since the true solution was enumerated
for the LTM test case used in this study, the metric
was calculated as the difference between the volume of
the objective space dominated by the true Pareto-opti-
mal set and the volume of the objective space dominated
by an approximation set (i.e., solutions generated by the
algorithms). Hence, smaller indicator values are desired
as this indicates a smaller difference between the refer-
ence set and the approximation set (assuming minimiza-
tion of objectives). The unary e-indicator metric [53]
represents the smallest distance that an approximation
set must be translated in order to completely dominate
the reference set. Again, smaller values of this metric
are desirable as this indicates a closer approximation
to the reference set. For additional details on the hyper-
volume indicator and the unary e-indicator metrics, see
Zitzler and Thiele [52] and Zitzler et al. [53].

4.4. First-order empirical attainment function

The first-order empirical attainment function [55] can
be used to represent the probabilistic performance of
MOEAs by measuring the ‘‘attainment’’ of a reference
or true Pareto-optimal set of solutions by the distribu-
tion of approximation sets generated using multiple ran-
dom seed MOEA runs. For example, the minimum
attainment surface represents the poorest performance
of the algorithm across all runs and the maximum
attainment surface, the best performance across all runs.
The average attainment surface is representative of the
surface which was attained in 50% of the runs. The
attainment function becomes extremely computationally
intensive and difficult to compute beyond two-dimen-
sions, so in this study we demonstrate the attainment
metric using representative results for two-objective sub-
sets of the four-objective space. Differences in attain-
ment functions across algorithms can be assessed using
a Kolmogorov–Smirnov test which checks for signi-
ficant differences between cumulative distribution func-
tions.
5. Computational experiment

In this study, the NSGAII, the eMOEA, and the
SPEA2 were parameterized according to the most com-
monly recommended settings from the EMO literature.
It should be noted that all of the tested algorithms used
simulated binary crossover (SBX) [48], polynomial
mutation [13], and elitism [13]. All of the algorithms uti-
lized the same probabilities of crossover and mutation
(pc = 1.0 and pm = 1/N, respectively, where N is the pop-
ulation size), and the same crossover and mutation dis-
tribution indices (gc = 15 and gm = 20, respectively)
associated with each of these operators. The NSGAII,
the eMOEA, and the SPEA2 were assigned a population
size of 100 individuals based on recommendations in
prior literature [1,6,9,11,49]. The e-NSGAII used adap-
tive population sizing and automatic termination, thus
requiring only a starting population size (for this study,
Ni = 10 was chosen) and termination criteria that re-
quired at least a 10% improvement in the e-non-domi-
nated archive. The relevant parameterization of each
of the algorithms is summarized in Table 1.



Table 1
Summary of algorithm parameters used in this study

NSGAII e-NSGAII eMOEA SPEA2

Population size N = 100 Dynamic starting with N = 10 N = 100 N = 100
Termination criteria 192,400 Evaluations <10% Improvement 192,400 Evaluations 192,400 Evaluations
Probability of crossover 1.0 1.0 1.0 1.0
Crossover dist. index 15 15 15 15
Probability of mutation 1/N 1/N 1/N 1/N
Mutation dist. index 20 20 20 20
[ecost econc euncert emass] NA [100 10�5 10�2 10�6] [100 10�5 10�2 10�6] NA
Variable representation Real Real Real Real
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In order to accurately assess the reliability of each
algorithm, 50 random seeds were chosen resulting in
50 random seed trial runs for each algorithm. The reader
should note that identical random seeds were specified
for the NSGAII, the e-NSGAII, and the eMOEA since
they all use the same random number generator. The
random number generator used by the SPEA2 differed
from the other algorithms making the choice of identical
random seeds impossible. The impacts of random num-
ber generator differences were minimized in this study by
using 50 trial runs for statistical performance assessment
of each MOEA. In order to facilitate a fair performance
comparison (since the e-NSGAII automatically termi-
nates based on user defined accuracy goals), the
e-NSGAII was run for 50 random seed trial runs and
the average number of design evaluations that it re-
quired to automatically terminate was used as a basis
for parameterizing the runtime of the NSGAII, the
eMOEA, and the SPEA2 for the same random seeds
(this resulted in approximately 192,400 design evalua-
tions). Parameterizing the runtime of the other algo-
rithms in this manner gave each algorithm the same
opportunity (on average) to generate the Pareto front
for the LTM test case. However, the reader should note
that this maximum runtime for the NSGAII, the
eMOEA, and the SPEA2 would not be known in ad-
vance, requiring the user to estimate the runtime needed
to sufficiently solve their problem using trial-and-error
analysis.

Epsilon resolution settings for each of the four-objec-
tives (ecost, econc, euncert, and emass) were chosen based on
reasonable precision requirements and were set to 100,
10�5, 10�2, and 10�6, respectively, for each the
e-NSGAII and the eMOEA. For example, ecost was set
to 100 because the cost objective was formulated to rep-
resent the number of sampling points in a potential de-
sign, and the emass was set to 10�6 because values for this
design objective ranged from 10�6 to 103, thus requiring
high precision to capture low objective values. The e res-
olution settings limit the archive size to the number of
solutions that exist at that resolution and are solely
based on what the practitioner considers an acceptable
or publishable solution precision. Reed et al. [56] dem-
onstrated that interactive refinement of search precision
requirements could reduce the number of design evalua-
tions required to solve a similar LTM application by
90% while maintaining a high quality representation of
the objective tradeoffs. The enumeration of the 25 well
LTM test case revealed a total of 2439 Pareto-optimal
solutions. At the e resolution setting used in this study,
there are 2411 e-non-dominated solutions. To make
the SPEA2 comparable to the other algorithms, its max-
imum archive size was set to 2411 solutions so that ar-
chive truncation would occur if the algorithm found
more than this quantity of solutions. Again, the reader
should note that archive size specification significantly
impacts the SPEA2�s performance and that the algo-
rithm�s archive is typically sized using trial-and-error
analysis. In order to make the NSGAII comparable to
the other algorithms, an offline archive which used tradi-
tional non-domination sorting was added to the algo-
rithm and updated after each generation.

Other relevant parameters include a diversity metric
grid specification of 12 blocks for each coordinate axis
of the projected solutions (see Deb and Jain [11] for
additional information) and e resolutions settings (ecost,
econc, euncert, and emass) for the e-performance metric of
100, 10�1, 100, and 10�2, respectively. A lower resolution
was used in the calculation of the e-performance metric
so all of the algorithms� results could be visualized and
compared. In addition, since the eMOEA and the
SPEA2 are real-coded algorithms, the inherent binary
representation of the well sampling schemes was con-
verted to a real-coded representation using variables
ranging from 0.0 to 1.0. If the algorithm generated a
variable less then 0.5, it was changed to a 0.0 and vari-
ables greater than or equal to 0.5 were changed to 1.0.
Interestingly, this approach improved the performances
of both the NSGAII and the e-NSGAII relative to their
binary implementations.
6. Results

Fig. 6 presents runtime results of e-performance, con-
vergence, and diversity, versus total design evaluations
for each of the algorithms compared. The results of all
50 random seed trial runs are shown in the figure with



Fig. 6. Dynamic performance plots of e-performance, convergence, and diversity versus total design evaluations for the NSGAII, the e-NSGAII, the
eMOEA, and the SPEA2 for 50 random seed trial runs. Mean performance is indicated by a solid line, the standard deviation by a dashed line, and
the range of performance by the shaded region.
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the mean performance indicated by a solid line, the stan-
dard deviation by a dashed line, and the range of ran-
dom seed performance indicated by the shaded region.
Visualizing the results in this manner allows for compar-
ison between the dynamics and reliability (i.e., larger
shaded regions indicate lower random seed reliability)
of each algorithm. The first row of plots portraying run-
time e-performance reveal that the NSGAII achieves an
end-of-run e-performance of 21% on average. The
eMOEA achieves 59% e-performance, but its reliability
is low as is indicated by its range of performance. The
e-NSGAII and SPEA2 attain the highest levels of aver-
age e-performance at 68% and 69%, respectively, and
both algorithms are highly reliable with the SPEA2
exhibiting slightly higher reliability than the e-NSGAII.
In fact, the e-performance of the e-NSGAII and the
SPEA2 is consistently two to three times that achieved
by the NSGAII. Key performance differences between
the e-NSGAII and the SPEA2 are highlighted in
Fig. 7. This figure is formatted similarly to Fig. 6 except
that it focuses on key areas where performance differs
between the two algorithms. The first row of plots in this
figure shows the early runtime e-performance (i.e., less
than 20,000 design evaluations) of the e-NSGAII and
the SPEA2. In these plots, the lower bound of the
e-NSGAIIs performance approximately matches the
upper bound performance of the SPEA2 indicating that
the e-NSGAII is highly efficient early in its runs. This
also indicates that the use of initially small population
sizes are greatly improving early search progress. Differ-
ences in reliability between the algorithms can be ex-
plained by the e-NSGAIIs use of initially small
populations, in this case 10 individuals, versus the
SPEA2s use of 100 individuals to begin search. This re-
sult also indicates the e-NSGAII would be more effective
at conducting computationally expensive runs to obtain
a rough approximation of the Pareto front.

Runtime convergence metric results are shown in the
second row of Fig. 6. The runtime convergence metric
displays a similar trend in performance differences be-
tween the algorithms. The NSGAII performs the poor-
est in terms of convergence and has a low reliability.
The eMOEA performs much better than the NSGAII
but achieves a low level of reliability later in its runs with
its distribution of random seed trial runs weighted to-
wards lower convergence values (as is indicated by the
mean performance line). The e-NSGAII attains the best
final measure of convergence and maintains the this
superiority throughout its entire run when compared
to the NSGAII and the eMOEA. Comparing the
e-NSGAII and the SPEA2 reveals that the larger search
population used by the SPEA2 yields a higher reliability
near the beginning of its runs while the e-NSGAII at-
tains a higher reliability towards the end of its runs
due to its adaptive population sizing. Focusing on the
later portion of the convergence plot (greater than



Fig. 7. Dynamic performance plots of e-performance, convergence,
and diversity versus total design evaluations for the e-NSGAII and the
SPEA2 for 50 random seed trial runs. These plots focus on interesting
regions showing disparate performance between the two algorithms.
The top panels focus on the e-performance results of the algorithms at
less than 20,000 design evaluations. The middle panels focus on
convergence values less than 0.005 at greater than 50,000 design
evaluations. The bottom panels focus on diversity values greater than
0.6 at less than 100,000 design evaluations.

Table 3
Mean and standard deviations of the hypervolume indicator and unary
e-indicator metric results for algorithm performance across 50 random
seed trial runs

Hypervolume (·10�6)
mean (std. dev.)

e-Indicator mean
(std. dev.)

NSGAII 12.5 (2.23) 2.07 (0.19)
eMOEA 41.1 (20.0) 2.86 (0.71)
e-NSGAII 1.33 (0.57) 1.11 (0.09)
SPEA2 17.4 (8.96) 1.96 (0.27)

Table 2
Mean and standard deviations of ultimate algorithm performance
across 50 random seeds

e-Performance
mean (std. dev.)

Convergence mean
(std. dev.)

Diversity mean
(std. dev.)

NSGAII 0.21 (0.016) 0.0160 (0.0022) 0.77 (0.019)
eMOEA 0.59 (0.068) 0.0028 (0.0021) 0.65 (0.037)
e-NSGAII 0.68 (0.022) 0.0008 (0.0001) 0.77 (0.023)
SPEA2 0.69 (0.010) 0.0012 (0.0004) 0.70 (0.027)
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50,000 design evaluations) in Fig. 7 reveals a significant
difference in performance between the two algorithms.
Namely, the ultimate average convergence of the
e-NSGAII (indicated by the solid line) is consistently
better than the SPEA2s average convergence and the
envelope of reliability consistently improves throughout
the duration of the e-NSGAIIs runs.

The diversity metric reveals that both the NSGAII
and the e-NSGAII perform comparatively well indicat-
ing that even though the NSGAII is achieving low aver-
age convergence and e-performance measures, the
solutions that it is finding are representative of the full
extent of the Pareto front. Both algorithms ultimately
perform slightly better in diversity than the eMOEA
and the SPEA2 and they maintain this superiority
throughout their entire runs. Fig. 7 highlights the differ-
ences in diversity between the e-NSGAII and the SPEA2
in the third row of plots for early portions of the runs
(less than 100,000 design evaluations). These plots reveal
that the e-NSGAII achieves a higher level of diversity
than the SPEA2 early in its runs. In fact, the lower
bound diversity performance of the e-NSGAIIs approx-
imates the upper bound performance of the SPEA2.

Final performance metric results are summarized in
Table 2. The average final e-performance of the
e-NSGAII is superior to the NSGAII and the eMOEA,
and comparable to the SPEA2. The average final con-
vergence of the e-NSGAII is superior to all other algo-
rithms compared. The average final diversity of the
e-NSGAII is superior to the eMOEA and the SPEA2
and equivalent to the NSGAII. The results shown in
Table 2 emphasize the need to assess dynamics of per-
formance rather than just end-of-run results.

Hypervolume indicator and e-indicator metric results
are shown in Table 3. The hypervolume indicator mea-
sure represents the average difference in dominated
hypervolume between the true Pareto-optimal set and
the approximation sets generated by the algorithm runs.
The average hypervolume indicator results reveal that
the hypervolume measure achieved by the e-NSGAII is
an order of magnitude lower than that achieved by the
other algorithms indicating superior performance. The
eMOEA performs the poorest in terms of its hypervo-
lume measure. In addition, the e-NSGAII achieves the
lowest standard deviation of all algorithms in this
measure. Interestingly, the NSGAII performs better in
this measure than the SPEA2 indicating that even
though the NSGAII is finding fewer solutions, the
spread of the solutions throughout the objective space
are dominating a volume greater than that of the
SPEA2. The e-indicator metric represents the smallest
distance on average that an algorithm�s approximation
sets must be translated to completely dominate the true



Fig. 9. First-order attainment surfaces of the conflicting two-objective
pairs, cost–conc and cost–uncert. The minimum and maximum
attainment surfaces for all runs is represented by the shaded region.
The mean or 50% attainment surface is represented by dots and the
true tradeoff solutions are represented by circles. Cost levels 7 through
20 are shown for clarity.

804 J.B. Kollat, P.M. Reed / Advances in Water Resources 29 (2006) 792–807
Pareto-optimal set. The results of this metric indicate
that the e-NSGAII requires the smallest average transla-
tion distance and that the eMOEA requires the largest
translation distance on average. In addition, the e-
NSGAII achieves the smallest standard deviation in
this measure compared to the other algorithms. The
Kruskal–Wallis non-parametric statistical test for signi-
ficant differences between multiple independent samples
[57] was used to determine if the hypervolume and e-
indicator metric results differed significantly between
algorithms. The test revealed that all differences were
significant at the 99% confidence level.

Reed and Minsker [20] proposed a LTM design meth-
odology for high-order Pareto optimization whereby
conflicting objectives which are subsets of the larger
multi-objective problem are analyzed to aid in choosing
a single compromise solution from the full approxima-
tion set. For the LTM test case used in this study, the
conflicting pairs of objectives analyzed include sampling
cost and concentration estimation error (cost–conc) and
sampling cost and concentration estimation uncertainty
(cost–uncert). Plots of the two-objective tradeoffs drawn
from the true four-objective Pareto surface are shown in
Fig. 8. These tradeoffs are subsequently used to better
understand the relationships between the LTM design
objectives. When using this methodology, the ability of
the MOEA to effectively find close approximations to
the two-objective conflicting tradeoffs is important.

The first-order empirical attainment function can be
used to determine the range of algorithm performance
in obtaining the two-objective tradeoffs and to deter-
mine if the abilities of the algorithms to attain these
tradeoffs differ significantly. The first-order attainment
surfaces for the conflicting objective pairs, cost–conc
and cost–uncert are shown in Fig. 9. In the figure, the
NSGAII and the e-NSGAII appear to be the most reli-
able algorithms for consistently finding solutions close
to or matching the two-objective tradeoffs as is indicated
by their small range of performance. The eMOEA has
the most difficulty finding solutions on the two-objective
tradeoffs for its runs with 50% attainment differing sub-
stantially from the true tradeoffs for cost levels 7
Fig. 8. Two-objective tradeoffs drawn from the true four-objective
Pareto surface. The cost–conc tradeoff contains 42 solutions and the
cost–uncert tradeoff contains 37 solutions.
through 11. The SPEA2 performs slightly better than
the eMOEA in that its 50% attainment levels for the
cost–conc tradeoff only differ significantly for cost levels
7 through 10 and for the cost–uncert tradeoffs for cost
levels 8 and 9. The SPEA2s range of performance is sig-
nificantly poorer than the NSGAII and the e-NSGAII.
The e-NSGAII is clearly the superior algorithm for con-
sistently finding the two-objective tradeoffs as the range
of performance for its runs is quite small for both trade-
offs. All differences between attainment surfaces achieved
by each algorithm are significant to greater than 99%
confidence using a generalization of the multi-variate
two-sided Kolmogorov–Smirnov test for two indepen-
dent samples [55,58].
7. Discussion

The results presented in this study indicate superior
performance of the e-NSGAII in terms of the hypervo-
lume indicator, e-indicator, and first-order empirical
attainment function metrics. In addition, the runtime
metric results indicate that the e-performance and con-
vergence dynamics of the e-NSGAII are competitive to
superior relative to the SPEA2, with both algorithms
greatly outperforming the NSGAII and eMOEA in
terms of these metrics. Dynamic diversity results indi-
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cate superior performance of the e-NSGAII relative to
the SPEA2. The improvements in performance of the
e-NSGAII over its parent algorithm the NSGAII dem-
onstrate that the application of e-dominance archiving,
dynamic population sizing with archive injection, and
automatic termination greatly improve algorithm effi-
ciency and reliability. In addition, the usability of the
algorithm is improved through the elimination of the
population sizing parameter, the replacement of runtime
specification by a more intuitive termination criteria,
and the addition of e-dominance archiving which elimi-
nates large costs associated with computations at unnec-
essary levels of precision.

Although the e-NSGAII and the SPEA2 use the same
mating and mutation operators, the key factor leading
to differences in their performances results from the
e-NSGAIIs use of dynamic population sizing and injec-
tion. The original NSGAII uses a selection process (see
Fig. 4) where the best N solutions are selected from a
combined pool of N elite parents and N children gener-
ated from the elite parents. In essence, this represents a
form of truncation selection where the top N solutions
from a pool of 2N solutions are selected every genera-
tion. This truncation selection makes the original
NSGAII very sensitive to population size [2] because
increasing the population size results in an increase in
selection pressure (i.e., the probability of selecting good
solutions increases). The ability of the e-NSGAII to
dynamically change its population size allows the algo-
rithm to increase or decrease selection pressure commen-
surate with search progress. When the algorithm is
performing well, selection pressure is increased (i.e.,
the population size is increased) and the algorithm
quickly proceeds towards favourable regions of the
search space (i.e., injected archive solutions). However,
if the algorithm is having difficulty finding highly fit
solutions, selection pressure is either maintained or de-
creased and the algorithm continues exploring the
search space. Initially small population sizes are utilized
by the e-NSGAII to direct search at a low computa-
tional cost until the algorithm begins finding highly fit
solutions. At this point, the algorithm immediately in-
creases its selection pressure, and quickly proceeds to-
wards favourable regions of the search space.

Prior knowledge of the decision and objective space
characteristics of high-dimensional water resources
problems is usually limited. Hence, choosing optimal
MOEA parameters to achieve efficient and reliable algo-
rithm performance is necessary to ensure that the com-
putation time required to solve water resources
problems is not wasted on trial-and-error analysis. The
e-NSGAIIs use of dynamic population sizing makes this
lack of prior knowledge less relevant by allowing the
algorithm to dynamically adjust its population size com-
mensurate with problem difficulty and resolution
requirements. In addition, providing automatic termina-
tion capabilities eliminates the need to parameterize
algorithm runtime by providing a more intuitive method
whereby the user can specify the percentage change in
solution quantity and quality required to continue
search. It is important to note that the other algorithms
analyzed in this study used information gained from the
e-NSGAII in terms of required runtime. In addition, the
SPEA2s archive size was parameterized based on the
number of true Pareto optimal solutions found by enu-
merating the LTM test case. This information would not
typically be known when solving water resources appli-
cations and trial-and-error analysis would be necessary
to ensure that the archive size can accommodate a suffi-
cient approximation to the true Pareto front.

It has been demonstrated that e-dominance archiving
will preserve a good representation of the Pareto front
for both low and high resolution settings [5,6,56]. The
reader should also note that the addition of e-dominance
archiving to the e-NSGAII does not add additional
parameters, but rather adds flexibility in that the user
has the option to control precision requirements and
hence algorithm runtime. Reed et al. [56] have shown
that decreasing objective precision requirements of the
e-NSGAII does in fact result in decreased runtime (i.e.,
approximations are accepted to save computation time).
More formally, from evolutionary algorithm theory
[19,59], the population size required by MOEAs to solve
multi-objective problems is directly related to the size of
the Pareto-optimal set. e-dominance archiving allows
water resources users to directly reduce the e-non-domi-
nated set size and the ultimate computational require-
ments of their applications. Moreover, in the limit
when the e-dominance archive size stabilizes, the
e-NSGAIIs ‘‘connected runs’’ are equivalent to a diver-
sity based EA search enhancement recommended by
Goldberg [50] termed ‘‘time continuation’’. The
e-NSGAII shows great potential as an efficient, reliable,
and easy-to-use MOEA for water resources applications.
8. Conclusions

This study compared the performance of four state-
of-the-art evolutionary multi-objective optimization
algorithms (the NSGAII, the e-NSGAII, the eMOEA,
and the SPEA2) on a four-objective LTM test case.
The LTM test case objectives included: (i) minimize
sampling cost, (ii) minimize contaminant concentration
estimation error, (iii) minimize contaminant concentra-
tion estimation uncertainty, and (iv) minimize contami-
nant mass estimation error. The 25-well LTM test case
was enumerated to provide the true four-objective
Pareto-optimal solution set to facilitate rigorous testing
of the EMO algorithms. The performances of the four
algorithms were assessed and compared using three
runtime performance metrics (convergence, diversity,
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and e-performance), two unary metrics (the hypervolume
indicator and e-indicator) and the first-order empirical
attainment function. The use of e-dominance archiving,
dynamic population sizing with archive injection, and
automatic termination in the e-NSGAII have resulted
in a robust algorithm that is easier to implement than tra-
ditional MOEAs. The results of this study indicate that
the e-NSGAII is greatly improved over its parent algo-
rithm, the NSGAII, its performance exceeds that of the
eMOEA, and its performance is competitive to superior
relative to the SPEA2. However, the key difference
between the e-NSGAII and the SPEA2 is that the e-
NSGAII eliminates much of the traditional trial-and-
error parameterization required by the SPEA2 (i.e.,
water resources applications are easier to solve efficiently
and reliably). This study demonstrates a rigorous meth-
odology for testing new MOEA tools and highlights
key performance issues that impact water resources
applications. Overall, the e-NSGAII developed as part
of this study shows great potential as an efficient, reliable,
and easy-to-use MOEA for water resources applications.
Appendix A. Supplementary data

Supplementary data associated with this article can
be found, in the online version, at doi:10.1016/
j.advwatres.2005.07.010.
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